Nortriterpenoids from Chukrasia tabularis var. velutina

Chuan-Rui Zhang, Sheng-Ping Yang, Qiao Zhu, Shang-Gao Liao, Yan Wu, and Jian-Min Yue*
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China

Received July 14, 2007

Five new limonoids, tabularisins E-I (1-5), and a new dinorcycloartane, (24R)-28,29-dinor-cycloartane-3 $\beta, 24,25$-triol (6), together with three known compounds, were isolated from the twigs and leaves of Chukrasia tabularis var. velutina. Their structures were elucidated primarily on the basis of spectroscopic methods.

Plants belonging to the Maliaceae family are rich sources of structurally diverse and biologically significant limonoids. ${ }^{1}$ Previous chemical investigations on the genus Chukrasia led to the isolation of a number of phragmalin-type limonoids. ${ }^{2}$ C. tabularis var. velutina (Wall.) King (Maliaceae), a timber tree that grows mainly in tropical areas of Asia such as India and southern China, ${ }^{3}$ is known to contain β-sitosterol, daucosterol, and some aliphatic compounds. ${ }^{4}$ In the current study, five new limonoids ($\mathbf{1 - 5}$) and a new dinorcycloartane (6), as well as three known compounds, tabularisins A-C (7-9) ${ }^{2}$ d were isolated from an ethanolic extract of the twigs and leaves of C. tabularis var. velutina collected in Xishuangbanna, Yunnan Province, China. We report herein the isolation and structural elucidation of these new compounds.

$$
\begin{array}{lll}
& R^{1} & R^{2} \\
1 & H & A C \\
2 & H & A C \\
7 & \mathrm{OAC} & \mathrm{AC} \\
8 & \mathrm{OAC} & \mathrm{H}
\end{array}
$$

Results and Discussion

Tabularisin E (1), a white, amorphous powder, possessed a molecular formula of $\mathrm{C}_{39} \mathrm{H}_{46} \mathrm{O}_{18}$ (calcd 802.2684) as determined by HREIMS ([M] ${ }^{+}, m / z 802.2700$) and supported by NMR data (Tables 1 and 2). Strong IR absorptions showed the presence of $\mathrm{OH}\left(3435 \mathrm{~cm}^{-1}\right)$ and carbonyl groups (1730 and $1759 \mathrm{~cm}^{-1}$). The ${ }^{1} \mathrm{H}$ (Table 1) and ${ }^{13} \mathrm{C}$ NMR (Table 2) data indicated the existence of one orthoacetate, one methoxyl, one isobutyryloxyl, three acetoxyl, two additional carbonyl groups that came from two esters, and one β-furyl ring. These functionalities accounted for 9 out of the 17 degrees of unsaturation, and the remaining 8 degrees of

[^0]unsaturation were thus required for the presence of an octacyclic core in $\mathbf{1}$. Two proton signals at $\delta 2.82$ and 3.36 (s, each ca. 1H) showed no correlation with any carbon signals in the HSQC spectrum and were assigned to exchangeable OH protons. The aforementioned data and extensive analyses of its 1D NMR spectra indicated that compound $\mathbf{1}$ was a phragmalin-type limonoid. ${ }^{2,5}$

The structure of $\mathbf{1}$ was further demonstrated by analysis of 2D NMR spectra, especially HMBC (Figure 1). Two proton resonances at $\delta 1.42(\mathrm{brd}, J=7.0 \mathrm{~Hz})$ and $2.64(\mathrm{dd}, J=7.0$ and 3.0 Hz$)$ belonging to the methylene carbon $\mathrm{C}-18$ ($\delta 18.6$) showed correlations with $\mathrm{C}-13(\delta 31.0)$ and $\mathrm{C}-14(\delta 30.7)$, respectively, indicating that $\mathrm{C}-18$ linked with both $\mathrm{C}-13$ and $\mathrm{C}-14$ to form a cyclopropyl ring similar to that of tabularisins A-C (7-9). ${ }^{2 \mathrm{~d}}$ The assignments of three acetoxyls to $\mathrm{C}-3(\delta 85.7), \mathrm{C}-12(\delta 66.4)$, and $\mathrm{C}-15(\delta 69.7)$ were accomplished by the HMBC correlations from H-3 ($\delta 5.50$, s), H-12 ($\delta 5.13, \mathrm{~d}, J=3.1 \mathrm{~Hz}$), and H-15 ($\delta 7.18, \mathrm{~d}, J=3.0 \mathrm{~Hz}$) to the corresponding carbonyls of three acetoxyl groups. An ester carbonyl carbon at $\delta 166.9$ correlated with $\mathrm{H}-15$ was assignable to $\mathrm{C}-16$. The HMBC correlations from $\mathrm{H}-17(\delta 6.42$, s) to $\mathrm{C}-21(\delta$ $142.0)$ and $\mathrm{C}-22(\delta 109.6)$ revealed that the β-furyl group was attached to $\mathrm{C}-17(\delta 71.4)$. Two proton signals of $\mathrm{H}_{2}-6$ at $\delta 2.65$ (brd, $J=16.5 \mathrm{~Hz}$) and 2.43 (dd, $J=16.5,12.2 \mathrm{~Hz}$) showed HMBC correlations with $\mathrm{C}-4(\delta 44.8), \mathrm{C}-5(\delta 38.0)$, C-7 ($\delta 173.7$), and $\mathrm{C}-10(\delta 43.9)$, indicating attachment of the C-6-C-7-unit at C-5. The only methoxyl was linked to C-7 by the HMBC correlation between MeO and C-7. The attachment of an isobutyryloxyl at C-30 ($\delta 70.1$) was revealed by the HMBC correlation from $\mathrm{H}-30(\delta 5.39$, s) to its carbonyl carbon. Two proton resonances assignable to OH groups displayed HMBC correlations with C-1 ($\delta 82.8$) and C-2 ($\delta 76.5$), respectively, indicating OH groups at these positions. The remaining three oxygenated carbons were assigned to $\mathrm{C}-8(\delta 78.2)$, C-9 ($\delta 90.4$), and C-11 ($\delta 74.8$) by the mutual HMBC correlations of Me-19/C-9, H-30/C-8, H-30/C-9, H-11/C-8, H-11/C-9, H-11/ $\mathrm{C}-12$, and $\mathrm{H}-11 / \mathrm{C}-13$, indicating the presence of an $8,9,11-$ orthoacetate ${ }^{2 \mathrm{~d}}$ though no direct HMBC correlations are available.

The relative configuration of $\mathbf{1}$ was fixed using a ROESY experiment (Figure 1). The ROESY cross-peaks of $\mathrm{H}-5 / \mathrm{H}-12, \mathrm{H}-5 /$ $\mathrm{H}-17, \mathrm{H}-5 / \mathrm{H}-15, \mathrm{H}-15 / 3-\mathrm{OAc}, \mathrm{H}-17 / 3-\mathrm{OAc}, \mathrm{H}-17 / \mathrm{H}-12, \mathrm{H}-17 / \mathrm{H}-$ 15 , and $\mathrm{H}-15 / \mathrm{H}-30$ indicated that $\mathrm{H}-5,3-\mathrm{OAc}, \mathrm{H}-12, \mathrm{H}-17, \mathrm{H}-15$, and $\mathrm{H}-30$ are co-facial and randomly assigned as β-oriented. The ROESY correlation between $\mathrm{H}-18 \mathrm{~b}(\delta 1.42)$ and $\mathrm{H}-22(\delta 6.49$, brd, $J=1.7 \mathrm{~Hz}$) suggested that the cyclopropyl group and the β-furyl ring were α-oriented. ROESY correlations of $\mathrm{Me}-32 / \mathrm{Me}-3^{\prime}$, Me$32 / \mathrm{H}-18 \mathrm{a}$ ($\delta 2.64$), Me-4'/1-OH, and Me-4'/2-OH revealed that the $8,9,11$-orthoacetate, 30 -isobutyryloxyl, 1-OH, and $2-\mathrm{OH}$ were α-oriented. Furthermore, $\mathrm{Me}-19$ and the $\mathrm{CH}_{2}-29$ group were assigned to be α-oriented on the basis of ROESY correlations of $\mathrm{H}-11 / \mathrm{Me}-19$, Me-19/H-29a, and H-3/H-29b. Thus, the structure of tabularisin E (1) was elucidated.

Tabularisin F (2) had the molecular formula $\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{O}_{17}$ as determined by HREIMS ([M] $\left.{ }^{+}, m / z 760.2579\right)$. Direct comparison

Table 1. ${ }^{1} \mathrm{H}$ NMR Data of $\mathbf{1 - 5}{ }^{a}$

proton	$\stackrel{\mathbf{1}}{\text { (mult., } J \text { in } \mathrm{Hz} \text {) }}$	$\begin{gathered} \mathbf{2} \\ \text { (mult., } \\ J \end{gathered} \text { in } \mathrm{Hz} \text {) }$	$\frac{\mathbf{3}}{\text { (mult., }} \boldsymbol{J} \text { in } \mathrm{Hz} \text {) }$	$\stackrel{4}{\text { (mult., } J \text { in } \mathrm{Hz} \text {) }}$	$\stackrel{\mathbf{5}}{\text { (mult., }} \boldsymbol{J} \text { in } \mathrm{Hz} \text {) }$
3	5.50 s	5.50 s	5.30 s	5.28 s	5.27 s
5	2.58 brd (12.2)	2.50 brd (12.4)	2.44 brd (12.2)	2.78 s	2.66 s
6	a 2.65 brd (16.5)	a 2.48 brd (16.2)	a 2.87 brd (17.1)	6.16 s	5.36 s
	b $2.43 \mathrm{dd}(16.5,12.2)$	b 2.42 dd (16, 2, 12.4)	b $2.32 \mathrm{dd}(17.1,12.2)$		
11	4.17 d (3.1)	4.22 d (4.2)	4.22 d (3.9)	4.30 d (4.7)	4.18 d (5.0)
12	5.13 d (3.1)	3.86 brs	5.19 d (3.9)	5.35 d (4.7)	4.10 brs
15	7.18 d (3.0)	7.17 d (2.8)	7.03 d (2.6)	6.88 d (2.4)	6.84 d (2.4)
17	6.42 s	6.43 s	6.41 s	6.40 s	6.39 s
18a	2.64 dd (7.0, 3.0)	2.47 dd (6.8, 2.8)	2.94 dd (6.9, 2.6)	2.93 dd (6.8, 2.4)	2.59 dd (6.7, 2.4)
18b	1.42 brd (7.0)	1.36 brd (6.8)	1.49 brd (6.9)	1.47 brd (6.8)	1.36 brd (6.7)
19	1.30 s	1.32 s	1.30 s	1.29 s	1.29 s
21	7.46 brs	7.66 brs	7.54 dd (1.6, 0.7)	7.53 brs	7.69 dd (1.7, 0.8)
22	6.49 brd (1.7)	6.55 brd (1.2)	6.54 dd (1.7, 0.7)	6.53 brd (1.5)	6.53 brt (0.8)
23	7.38 brs	7.51 brt (1.5)	7.40 brt (1.6)	7.40 dd (1.5, 0.6)	7.46 brt (1.7)
28	0.82 s	0.80 s	0.75 s	0.92 s	0.90 s
29a	1.92 d (11.6)	1.92 d (10.0)	1.99 d (11.4)	2.26 d (11.3)	2.20 d (11.1)
29b	1.89 d (11.6)	1.89 d (10.0)	1.67 d (11.4)	1.69 d (11.3)	1.69 d (11.1)
30	5.39 s	5.39 s	5.05 s	4.90 s	4.89 s
32	1.66 s	1.67 s	1.73 s	1.71 s	1.71 s
2^{\prime}	$2.49-2.56 \mathrm{~m}$	$2.49-2.56 \mathrm{~m}$	$2.60-2.67$ m	$2.59-2.66 \mathrm{~m}$	$2.59-2.66$ m
$2^{\prime \prime}$				$2.68-2.75 \mathrm{~m}$	$2.66-2.73 \mathrm{~m}$
$3^{\prime \prime}$	1.20 d (6.9)	1.20 d (7.5)	1.20 d (7.0)	1.18 d (7.0)	1.17 d (7.0)
$3^{\prime \prime}$				1.24 d (7.0)	1.23 d (7.0)
4^{\prime}	1.18 d (6.9)	1.18 d (7.5)	1.18 d (7.0)	1.15 d (7.0)	1.15 d (7.0)
$4^{\prime \prime}$				1.19 d (7.0)	1.19 d (7.0)
1-OH	2.82 s	2.89 s	3.56 s	3.56 s	3.61 s
$2-\mathrm{OH}$	3.36 s	3.37 s			
11-OH			2.11 s	2.11 s	2.43 brs
$12-\mathrm{OH}$		not observed			2.43 brs
$3-\mathrm{OAc}$	2.20 s	2.20 s	2.34 s	2.35 s	2.34 s
$6-\mathrm{OAc}$				2.19 s	2.19 s
$12-\mathrm{OAc}$	1.66 s		1.64 s	1.66 s	
$15-\mathrm{OAc}$	2.33 s	2.33 s	2.20 s		
$-\mathrm{OCH}_{3}$	3.75 s	3.76 s	3.75 s	3.78 s	3.79 s

${ }^{a}$ Data measured in CDCl_{3} at 400 MHz ; chemical shifts are expressed in ppm; the spin coupling (J) is given in parentheses (Hz).
of the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR (Tables 1 and 2) of $\mathbf{2}$ with those of $\mathbf{1}$ suggested that $\mathbf{2}$ differed from $\mathbf{1}$ only in the absence of one acetyl group, and this was supported by its molecular formula, which showed 42 mass unit less than that of $\mathbf{1}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}, \mathrm{H}-12$ (δ 3.86 , brs) was upfield shifted ca. $\Delta \delta 1.27$ as compared with that of 1, indicating the presence of an OH at $\mathrm{C}-12(\delta 65.0)$ in $\mathbf{2}$ instead of the OAc as in $\mathbf{1}$. As the result, $\mathrm{C}-11(\delta 76.4)$ and $\mathrm{C}-13(\delta 34.6)$ of 2 were downfield shifted ca. $\Delta \delta 1.6$ and $\Delta \delta 3.6$, respectively, as compared with those of $\mathbf{1}$ due to the different γ-gauche effects between the $12-\mathrm{OH}$ of $\mathbf{2}$ and $12-\mathrm{AcO}$ of $\mathbf{1}$. The structure of $\mathbf{2}$ was further confirmed by a combined analysis of HSQC, HMBC, and ROESY spectra (for details see Supporting Information).

Tabularisin G (3) showed the same molecular formula $\left(\mathrm{C}_{39} \mathrm{H}_{46} \mathrm{O}_{18}\right)$ as $\mathbf{1}$. IR absorptions exhibited the presence of $\mathrm{OH}(3435$ cm^{-1}) and carbonyl groups (1736 and $1768 \mathrm{~cm}^{-1}$). The ${ }^{1} \mathrm{H}$ (Table 1) and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{3}$ (Table 2) implied that they had the same limonoid core as compound $\mathbf{1}$, and the differences were in the positions of the OH , ester, and orthoacetate groups. Acetoxyl groups were assignable to $\mathrm{C}-3(\delta 85.4), \mathrm{C}-12(\delta 68.3)$, and $\mathrm{C}-15$ ($\delta 70.6$) on the basis of their corresponding HMBC correlations (Figure 2). The HMBC correlations of $1-\mathrm{OH} / \mathrm{C}-1$ and $11-\mathrm{OH} / \mathrm{C}-11$ allowed the assignments of hydroxyls to C-1 ($\delta 84.6$) and C-11 (δ $67.4)$, respectively. One methyl ($4^{\prime}-\mathrm{Me}$) of the isobutyryl showed ROESY correlations with $\mathrm{H}-29 \mathrm{~b}(\delta 1.67, \mathrm{~d}, J=11.4 \mathrm{~Hz}$) and H-3 ($\delta 5.30$, s), favoring linkage of an isobutyryloxyl to C-2 (δ 83.1). Thus, the orthoacetate was attached to C-8 ($\delta 87.3$), C-9 ($\delta 84.6$), and C-30 ($\delta 76.8$). The relative configuration of $\mathbf{3}$ was established by the ROESY spectrum (Figure 2). The ROSEY correlations of $\mathrm{H}-5 / \mathrm{H}-12, \mathrm{H}-5 / \mathrm{H}-15, \mathrm{H}-5 / \mathrm{H}-17, \mathrm{H}-12 / \mathrm{H}-17$, and $\mathrm{H}-15 / \mathrm{H}-17$ indicated that they are co-facial and arbitrarily assigned as β-oriented. ROSEY correlations of $\mathrm{H}-15 / \mathrm{H}-30,3-\mathrm{OAc} / \mathrm{H}-15$, and $3-\mathrm{OAc} / \mathrm{H}-$ 17 revealed that 3-OAc and $\mathrm{H}-30$ also were β-oriented. ROESY correlations of $\mathrm{H}-18 \mathrm{~b} / \mathrm{H}-22, \mathrm{H}-18 \mathrm{a} / 11-\mathrm{OH}, \mathrm{H}-11 / \mathrm{Me}-19, \mathrm{H}-29 \mathrm{a} /$

Me-19, and $\mathrm{H}-29 \mathrm{~b} / \mathrm{H}-3$ indicated that the furyl ring, cyclopropyl group, $\mathrm{Me}-19$, and $\mathrm{CH}_{2}-29$ were α-oriented, and $\mathrm{H}-11$ was β-oriented. The ROESY correlations of Me-32/1-OH, H-3/Me-4', $\mathrm{H}-29 \mathrm{~b} / \mathrm{Me}-4^{\prime}$, and $\mathrm{Me}-19 / 1-\mathrm{OH}$ revealed that the $8,9,30$-orthoacetate, 2 -isobutyryloxyl, and $1-\mathrm{OH}$ were α-oriented.

Tabularisin $\mathrm{H}(4)$ was determined to have the molecular formula $\mathrm{C}_{43} \mathrm{H}_{52} \mathrm{O}_{20}$ (HREIMS). The ${ }^{1} \mathrm{H}$ (Table 1) and ${ }^{13} \mathrm{C}$ NMR (Table 2) data of $\mathbf{4}$ showed high similarity to those of tabularisin $\mathrm{C}(\mathbf{9}) ;{ }^{2 \mathrm{~d}}$ the only structural difference was that one acetyl of 9 was replaced by an isobutyryl in 4 . The isobutyryloxy group was then placed at C-15 ($\delta 69.9$) by the HMBC correlation between its carbonyl and $\mathrm{H}-15$ at $\delta 6.88(\mathrm{~d}, J=2.4 \mathrm{~Hz})$. The complete structural assignment of 4 was further confirmed by 2D NMR spectra (Supporting Information).

Tabularisin I (5), a white, amorphous powder, possessed a molecular formula of $\mathrm{C}_{41} \mathrm{H}_{50} \mathrm{O}_{19}$ as determined by HREIMS. Analysis of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 5 showed that it was likely a deacetyl derivative of $\mathbf{4}$, and this was supported by 42 mass units less in the molecular formula of 5 than that of $\mathbf{4}$. On further comparison with compound $\mathbf{4}, \mathrm{H}-12$ of $\mathbf{5}$ at $\delta 4.10(1 \mathrm{H}, \mathrm{brs})$ was upfield shifted ca. $\Delta \delta 1.25$, indicating that $\mathbf{5}$ was the 12 -deacetyl derivative of $\mathbf{4}$. The structure of $\mathbf{5}$ was finally confirmed by 2D NMR experiments, including HSQC, HMBC, and ROESY spectra (Supporting Information).
(24R)-28,29-Dinor-cycloartane-3 $\beta, 24,25$-triol (6), a white, amorphous powder, was determined to have a molecular formula of $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{O}_{3}$ (calcd 432.3603) by HREIMS; [M] ${ }^{+}, m / z 432.3597$. The strong IR absorption at $3423 \mathrm{~cm}^{-1}$ revealed the presences of OH groups. The ${ }^{1} \mathrm{H}$ NMR data (Table 3) exhibited proton resonances at δ $0.88(3 \mathrm{H}, \mathrm{s}), 0.89(3 \mathrm{H}, \mathrm{brd}, J=3.4 \mathrm{~Hz}), 0.96(3 \mathrm{H}, \mathrm{s}), 1.16(3 \mathrm{H}, \mathrm{s})$, and $1.21(3 \mathrm{H}, \mathrm{s})$ due to five methyl groups, an AB system centered at $\delta 0.07(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz})$ and $0.42(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz})$ due to the methylene of a cyclopropyl group, and two proton signals at $\delta 3.28$

Table 2. ${ }^{13} \mathrm{C}$ NMR Data of $\mathbf{1 - 5}{ }^{a}$

carbon	1	2	3	4	5
1	82.8	82.9	84.6	84.4	84.2
2	76.5	76.4	83.1	83.0	82.7
3	85.7	85.7	85.4	85.3	85.0
4	44.8	44.8	44.6	44.3	44.1
5	38.0	37.7	38.6	43.6	42.8
6	32.9	33.6	33.4	71.0	71.0
7	173.7	173.5	174.0	171.7	170.9
8	78.2	77.9	87.3	87.2	86.6
9	90.4	90.6	84.6	84.9	84.9
10	43.9	44.0	48.4	49.2	49.0
11	74.8	76.4	67.4	67.2	69.0
12	66.4	65.0	68.3	68.2	65.7
13	31.0	34.6	30.0	29.8	33.3
14	30.7	31.7	24.9	25.0	25.8
15	69.7	69.8	70.6	69.9	69.8
16	166.9	167.0	165.7	165.6	165.6
17	71.4	71.3	71.9	71.9	72.4
18	18.6	18.2	17.0	17.0	16.1
19	14.5	14.6	16.5	17.4	17.1
20	122.0	122.0	122.5	122.4	122.4
21	142.0	142.6	141.9	141.8	141.9
22	109.6	108.7	109.9	109.8	109.3
23	143.3	144.8	143.2	143.2	143.5
28	14.1	14.2	14.3	15.3	15.2
29	38.8	38.7	39.7	40.7	40.5
30	70.1	70.0	76.8	76.4	76.1
31	119.7	119.5	116.4	116.2	115.9
32	16.2	16.2	15.7	15.7	15.5
1^{\prime}	173.4	173.5	175.6	175.4	175.1
$1^{\prime \prime}$				174.8	174.6
2^{\prime}	33.9	33.9	34.5	34.2	34.1
$2^{\prime \prime}$				33.7	33.6
$3 \prime$	19.4	19.4	18.7	18.8	18.6
$3 \prime$				18.6	18.4
4^{\prime}	18.7	18.7	18.7	18.7	18.5
$4^{\prime \prime}$				18.4	18.2
$3-\mathrm{OAc}$	169.1	169.1	168.6	168.4	168.3
	20.9	21.0	21.0	20.9	20.7
6-OAc				169.1	169.1
				20.9	20.8
12-OAc	170.6		170.9	170.9	
	19.7		19.7	19.5	
$15-\mathrm{OAc}$	172.1	172.2	169.0		
	21.4	21.4	20.5		
$-\mathrm{OCH}_{3}$	52.4	52.4	52.3	53.5	53.4

${ }^{a}$ Data were measured in CDCl_{3} at 100 MHz ; chemical shifts (δ) are expressed in ppm.

Figure 1. Key $\mathrm{HMBC}(\mathrm{A}: \mathrm{H} \rightarrow \mathrm{C})$ and ROESY $(\mathrm{B}: \leftrightarrow)$ correlations of $\mathbf{1}$.
$(1 \mathrm{H}, \mathrm{m})$ and $3.68(1 \mathrm{H}$, brd, $J=9.6 \mathrm{~Hz})$ due to two oxygenated methines. Comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Table 3) of 6 with those of 29 -nor-cycloartane- $3 \beta, 24 \xi, 25$-triol, ${ }^{6}$ which was formerly classified as the steroid $4 \alpha, 14$-dimethyl-9,19-cyclocholestane-3 $\beta, 24 \xi, 25-$ triol, ${ }^{7}$ indicated that 6 was likely to be 28,29-dinor-cycloartane$3 \beta, 24,25$-triol. The NMR data of the two compounds showed high similarity except for the absence of the $\mathrm{C}-28$ methyl in 6 . In its ${ }^{13} \mathrm{C}$ NMR spectrum, C-3 ($\delta 71.2$) and C-5 (δ 37.1) were upfield shifted

Figure 2. Key HMBC $(\mathrm{A}: \mathrm{H} \rightarrow \mathrm{C})$ and $\operatorname{ROESY}(\mathrm{B}: \leftrightarrow)$ correlations of 3 .

Table 3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data of $\mathbf{6}^{a}$

position	$\begin{gathered} \delta_{\mathrm{H}} \\ \text { (mult., } J \text { in } \mathrm{Hz} \text {) } \end{gathered}$	$\delta_{\text {C }}$	position	$\begin{gathered} \delta_{\mathrm{H}} \\ \text { (mult., } J \text { in } \mathrm{Hz} \text {) } \end{gathered}$	$\delta_{\text {C }}$
1α	1.51 m	30.5	14		49.0
1β	1.28 m		15	$1.29 \mathrm{~m}, 2 \mathrm{H}$	35.0
2α	1.97 m	35.2	16α	1.88 m	28.0
2β	1.30 m		16β	1.35 m	
3	3.68 m	71.2	17	1.59 m	52.2
4α	1.81 m	42.4	18	$0.96 \mathrm{~s}, 3 \mathrm{H}$	17.4
4β	1.11 m		19a	0.42 d (3.7)	25.8
5	1.53 m	37.1	19b	0.07 d (3.7)	
6α	1.36 m	24.6	20	1.41 m	36.4
6β	0.77 m		21	0.89 br d, 3H (3.4)	18.5
7α	1.11 m	27.7	22a	1.76 m	33.5
7β	1.27 m		22 b	1.01 m	
8	1.71 m	46.1	23a	1.58 m	28.7
9		23.2	23 b	1.13 m	
10		29.8	24	3.28 br d (9.6)	79.6
11α	1.88 m	27.0	25		73.2
11β	1.28 m		26	$1.21 \mathrm{~s}, 3 \mathrm{H}$	23.1
12	$1.60 \mathrm{~m}, 2 \mathrm{H}$	32.8	27	$1.16 \mathrm{~s}, 3 \mathrm{H}$	26.5
13		45.3	30	$0.88 \mathrm{~s}, 3 \mathrm{H}$	18.9

${ }^{a}$ Data were measured in CDCl_{3} at $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and 100 MHz $\left({ }^{13} \mathrm{C}\right)$; chemical shifts (δ) are expressed in ppm; the spin coupling (J) is given in parentheses (Hz).
ca. $\Delta \delta 5.3$ and 6.3 from $\mathrm{C}-3(\delta 76.5)$ and $\mathrm{C}-5$ ($\delta 43.4$) in 29-nor-cycloartane- $3 \beta, 24 \xi, 25$-triol, respectively, supporting this deduction. Further, the chemical shifts of $\mathrm{C}-17(\delta 52.2)$ and the carbons of the side chain in 6 were essentially the same as those ($\mathrm{C}-17$, ca. $\delta 52.3$; C-20, са. $\delta 36.4$; C-21, са. $\delta 18.4$; C-22, ca. $\delta 33.5$; C-23, са. $\delta 28.7$; C-24, ca. $\delta 79.6$; C-25, ca. $\delta 73.2$; C-26, ca. $\delta 23.2$; C-27, ca. $\delta 26.6$) of ($24 R$)-cycloartane- $3 \beta, 24,25$-triol and slightly different from those (C-17, ca. $\delta 52.4$; C-20, ca. $\delta 35.9$; C-21, ca. $\delta 18.2$; C-22, ca. $\delta 33.1$; C-23, ca. $\delta 28.4 ; \mathrm{C}-24$, ca. $\delta 78.8 ; \mathrm{C}-25$, ca. $\delta 73.7$; C-26, ca. $\delta 23.3$; C-27, ca. $\delta 26.6$) of (24S)-cycloartane-3 $\beta, 24,25-$ triol, ${ }^{8}$ indicating that compound $\mathbf{6}$ was ($24 R$)-28,29-dinor-cycloartane- $3 \beta, 24,25$-triol. The structure of $\mathbf{6}$ was finally confirmed by analyses of 2D NMR, including HSQC, HMBC, and ROESY spectra (Figure 3 and Supporting Information).

Three known compounds were identified to be tabularisins A-C $(7-9)^{2 \mathrm{~d}}$ on the basis of their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and EIMS data and confirmed by co-TLC with authentic samples.

Experimental Section

General Experimental Procedures. IR spectra were recorded on a Perkin-Elmer 577 spectrometer with a KBr disc. UV spectra were measured on a Shimadzu UV-2550 UV-visible spectrophotometer. Optical rotations were made on a Perkin-Elmer 341 polarimeter at room temperature. NMR spectra were measured on a Bruker AM-400 spectrometer with TMS as internal standard. EIMS $(70 \mathrm{eV})$ and ESIMS were carried out on a Finnigan MAT 95 mass spectrometer and an Esquire 3000plus LC-MS instrument, respectively. All solvents used were of analytical grade (Shanghai Chemical Plant, Shanghai, People's Republic of China). Silica gel (300-400 mesh), C18 reversed-phase silica gel (150-200 mesh, Merck), and MCI gel

Figure 3. Key $\operatorname{HMBC}(\mathrm{A}: \mathrm{H} \rightarrow \mathrm{C})$ and $\operatorname{ROESY}(\mathrm{B}: \leftrightarrow)$ correlations of 6 .
(CHP20P, 75-150 $\mu \mathrm{M}$, Mitsubishi Chemical Industries Ltd.) were used for column chromatography, and precoated silica gel GF254 plates (Qingdao Marine Chemical Plant, Qingdao, People's Republic of China) were used for TLC.

Plant Material. The twigs and leaves of C. tabularis var. velutina were collected from Xishuangbanna, Yunnan Province, China, and were authenticated by Professor You-Kai Xu of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences. A voucher specimen (CTvv-2005-1Y) has been deposited in the Shanghai Institute of Materia Medica.

Extraction and Isolation. The air-dried powder of twigs and leaves (5 kg) of C. tabularis var. velutina was extracted with 95% ethanol extensively at room temperature to give a dark green residue (238 g), which was then partitioned between EtOAc and water to give the EtOAc-soluble fraction $\mathrm{E}(110 \mathrm{~g})$. The E fraction was first subjected to a column of MCI gel eluted with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (3:7 to 9:1) to give four fractions (F1-F4). F2 (13.5 g) was chromatographed on a silica gel column eluted with petroleum ether-EtOAc (gradient from 4:1 to 1:2) to afford five subfractions (F3a-F3e). F3d was subjected to a column of reversed-phase C_{18} silica gel eluted with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (from $6: 4$ to $8: 2$) to give three major fractions, F3d1-F3d3. F3d1 was then purified by silica gel CC eluted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(200: 1)$ to yield compound $6(30 \mathrm{mg})$. F3d2 was also purified by silica gel CC eluted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(300: 1)$ to yield $7(58 \mathrm{mg})$. F 3 d 3 was extensively purified by silica gel CC eluted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(400: 1)$ and then a column of reversed-phase C_{18} silica gel eluted with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(7: 3)$ to give $\mathbf{8}(13 \mathrm{mg})$. F3e was subjected to a column of reversed-phase C_{18} silica gel eluted with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (from $5: 5$ to 7:3) to give five major fractions, F3e1-F3e5. F3e2 was separated on a silica gel column eluted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (200:1) to yield compounds $2(8 \mathrm{mg})$ and $\mathbf{5}$ (14 mg). F3e4 was separated into three major subfractions by silica gel CC eluted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (150:1), and each of them was then purified on a column of reversed-phase C_{18} silica gel eluted with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(6: 4)$ to yield compounds $\mathbf{3}(12 \mathrm{mg}), \mathbf{4}(5 \mathrm{mg})$, and $9(11$ mg), respectively. F3e5 was purified by silica gel CC eluted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(200: 1)$ to afford compound $\mathbf{1}(20 \mathrm{mg})$.

Tabularisin E (1): white, amorphous powder; $[\alpha]^{20} \mathrm{D}+23(c 0.124$, $\left.\mathrm{CHCl}_{3}\right)$; UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon) 206$ (3.88) nm; IR (KBr) $\lambda_{\text {max }} 3547$, $3435,2972,1759,1730,1421,1369,1211,1022,889 \mathrm{~cm}^{-1}$; for ${ }^{1} \mathrm{H}$ NMR data, see Table 1; for ${ }^{13}$ C NMR data, see Table 2; ESIMS m / z $825[\mathrm{M}+\mathrm{Na}]^{+} ;$EIMS m/z $802[\mathrm{M}]^{+}$(6.5), 771 (7), 742 (100), 682 (22), 612 (90), 552 (63), 492 (78), 464 (60), 182 (58), 95 (69), 71 (97); HREIMS m/z 802.2700 (calcd for $\mathrm{C}_{39} \mathrm{H}_{46} \mathrm{O}_{18} 802.2684$).

Tabularisin \mathbf{F} (2): white, amorphous powder; $[\alpha]^{20}{ }_{\mathrm{D}}+12$ (c 0.75, $\left.\mathrm{CHCl}_{3}\right)$; UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 206$ (3.97) nm; IR (KBr) $\lambda_{\text {max }} 3538$, 3472, 2974, 1755, 1728, 1369, 1213, 1134, 1022, $874 \mathrm{~cm}^{-1}$; for ${ }^{1} \mathrm{H}$ NMR data, see Table 1; for ${ }^{13} \mathrm{C}$ NMR data, see Table 2; ESIMS m / z $783[\mathrm{M}+\mathrm{Na}]^{+} ;$EIMS m/z. $760[\mathrm{M}]^{+}$(26), 729 (8), 700 (45), 605 (26), 570 (21), 510 (27), 464 (25), 182 (57), 81 (31), 71 (100); HREIMS $m / z 760.2579$ (calcd for $\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{O}_{17} 760.2578$).

Tabularisin G (3): white, amorphous powder; $[\alpha]^{20}{ }_{\mathrm{D}}+17$ (c 0.700, $\left.\mathrm{CHCl}_{3}\right)$; UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 206(3.74) \mathrm{nm}$; IR (KBr) $\lambda_{\text {max }} 3435$, 2974, 1768, 1736, 1375, 1207, 1034, $892 \mathrm{~cm}^{-1}$; for ${ }^{1} \mathrm{H}$ NMR data, see Table 1; for ${ }^{13} \mathrm{C}$ NMR data, see Table 2; ESIMS m/z $825[\mathrm{M}+\mathrm{Na}]^{+}$; EIMS $m / z 802[\mathrm{M}]^{+}(1), 742$ (1), 714 (7), 627 (46), 566 (33), 534 (36), 506 (41), 464 (41), 182 (80), 95 (83), 71 (100); HREIMS m/z 802.2685 (calcd for $\mathrm{C}_{39} \mathrm{H}_{46} \mathrm{O}_{18}$ 802.2684).

Tabularisin H (4): white, amorphous powder; $[\alpha]^{20}{ }_{\mathrm{D}}+25(c$ 0.910, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 206(3.82) \mathrm{nm}$; IR (KBr) $\nu_{\text {max }} 3440$, 2976, 1767, 1736, 1374, 1205, 1038, $875 \mathrm{~cm}^{-1}$, for ${ }^{1} \mathrm{H}$ NMR data, see Table 1; for ${ }^{13} \mathrm{C}$ NMR data, see Table 2; ESIMS m/z $911[\mathrm{M}+\mathrm{Na}]^{+}$;

EIMS m/z $888[\mathrm{M}]^{+}(2), 828$ (1), 801 (6), 713 (40), 610 (16), 592 (25), 550 (22), 180 (16), 149 (13), 95 (35), 71 (100); HREIMS m/z 888.3047 (calcd for $\mathrm{C}_{43} \mathrm{H}_{52} \mathrm{O}_{20} 888.3052$).

Tabularisin I (5): white, amorphous powder; $[\alpha]^{20}{ }_{\mathrm{D}} \approx 0(c 0.730$, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 206(3.99) \mathrm{nm}$; IR (KBr) $\nu_{\max } 3496$, 2976, 1763, 1736, 1375, 1207, 1038, $876 \mathrm{~cm}^{-1}$, for ${ }^{1} \mathrm{H}$ NMR data, see Table 1; for ${ }^{13} \mathrm{C}$ NMR data, see Table 2; EIMS m/z. $846[\mathrm{M}]^{+}$(6), 800 (2), 671 (9), 592 (11), 564 (12), 550 (20), 180 (12), 149 (27), 95 (55), 71 (100); HREIMS $m / z 846.2941$ (calcd for $\mathrm{C}_{41} \mathrm{H}_{50} \mathrm{O}_{19} 846.2946$).
(24R)-28,29-Dinor-cycloartane-3ק,24,25-triol (6): white, amorphous powder; $[\alpha]^{20}{ }_{\mathrm{D}}+31\left(c 0.165, \mathrm{CHCl}_{3}\right)$; IR $(\mathrm{KBr}) \nu_{\max } 3423$, 2927, $2868,1635,1736,1466,1377,1161,1105,1074,1030 \mathrm{~cm}^{-1}$, for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 3; ESIMS m/z $455[\mathrm{M}+\mathrm{Na}]^{+}$; EIMS $m / z 432[\mathrm{M}]^{+}(22), 414$ (100), 399 (74), 381 (66), 320 (49), 287 (86), 269 (73), 175 (82), 161 (57), 147 (68), 145 (45), 135 (62), 127 (42), 121 (80), 107 (75), 95 (95), 81 (62), 59 (81); HREIMS m/z 432.3597 (calcd for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{O}_{3} 432.3603$).

Acknowledgment. Financial support from the Key Project of National Natural Science Foundation (Grant No. 30630072) and from the Shanghai Municipal Scientific Foundation (Grant No. 06DZ22028) of the People's Republic of China is gratefully acknowledged. We thank Prof. Y.-K. Xu of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, for the collection and identification of the plant material.

Supporting Information Available: Key HMBC and ROESY correlations of $\mathbf{2}, \mathbf{4}$, and $\mathbf{5}$ (figures); IR, MS, 1D and 2D NMR spectra of 1-6. This material is available free of charge via the Internet at http:// pubs.acs.org.

References and Notes

(1) (a) Champagne, D. E.; Koul, O.; Isman, M. B.; Scudder, G. G. E.; Towers, G. H. N. Phytochemistry 1992, 31, 377-394. (b) Roy, A.; Saraf, S. Biol. Pharm. Bull. 2006, 29, 191-201. (c) Wang, X. N.; Yin, S.; Fan, C. Q.; Wang, F. D.; Lin, L. P.; Ding, J.; Yue, J. M. Org. Lett. 2006, 8, 3845-3848. (d) Yin, S.; Fan, C. Q.; Wang, X. N.; Lin, L. P.; Ding, J.; Yue, J. M. Org. Lett. 2006, 8, 4935-4938. (e) Hay, A.-E.; Ioset, J. -R.; Ahua, K. M.; Diallo, D.; Brun, R.; Hostettmann, K J. Nat. Prod. 2007, 70, 9-13.
(2) (a) Nakatani, M.; Abdelgaleil, S. A. M.; Saad, M. M. G.; Huang, R. C.; Doe, M.; Iwagawa, T. Phytochemistry 2004, 65, 2833-2841. (b) Connolly, J. D.; Labbé, C.; Rycroft, D. S. J. Chem. Soc., Perkin Trans. 1 1978, 285-288. (c) Ragettli, T.; Tamm, C. Helv. Chim. Acta 1978, 61, 1814-1831. (d) Fan, C. Q.; Wang, X. N.; Yin, S.; Zhang, C. R.; Wang, F. D.; Yue, J. M. Tetrahedron 2007, 63, 6741-6747.
(3) Chen, S. K.; Chen, B. Y.; Li, H. In Flora Republicae Popularis Sinicae (Zhongguo Zhiwu Zhi); Science Press: Beijing, 1997; Vol. 43 (3), pp 47-49.
(4) Chen, J. T.; Xie, J. L.; Mao, D. L.; Liu, R. M. Yunnan Daxue Xuebao (Social Sciences Edition) 1992, 14, 51-54.
(5) (a) Cui, J. X.; Deng, Z. W.; Li, J.; Fu, H. Z.; Proksch, P.; Lin, W. H. Phytochemistry 2005, 66, 2334-2339. (b) Abdelgaleil, S. A. M.; Doe, M.; Morimoto, Y.; Nakatani, M. Phytochemistry 2006, 67, 452-458.
(6) (a) Ukiya, M.; Akihisa, T.; Yasukawa, K.; Kasahara, Y.; Kimura, Y.; Koike, K.; Nikaido, T.; Takido, M. J. Agric. Food Chem. 2001, 49, 3187-3197. (b) Kikuchi, T.; Akihisa, T.; Tokuda, H.; Ukiya, M.; Watanabe, K.; Nishino, H. J. Nat. Prod. 2007, 70, 918-922.
(7) Ohmoto, T.; Ikeda, K.; Chiba, T. Chem. Pharm. Bull. 1982, 30, 27802786.
(8) (a) Greca, M. D.; Fiorentino, A.; Monaco, P.; Previtera, L. Phytochemistry 1994, 35, 1017-1022. (b) Inada, A.; Murayta, H.; Inatomi, Y.; Nakanishi, T.; Darnaedi, D. J. Nat. Prod. 1995, 58, 1143-1146.

NP070345W

[^0]: * Corresponding author. Tel: $+86-21-50806718$. Fax: $+86-21-50806718$. E-mail: jmyue@mail.shenc.ac.cn.

